3.592 \(\int \frac{A+B \tan (c+d x)}{\sqrt{\cot (c+d x)} (a+b \tan (c+d x))} \, dx\)

Optimal. Leaf size=278 \[ -\frac{(b (A-B)-a (A+B)) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(b (A-B)-a (A+B)) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(a (A-B)+b (A+B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a (A-B)+b (A+B)) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{2 \sqrt{a} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{b} d \left (a^2+b^2\right )} \]

[Out]

((a*(A - B) + b*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a*(A - B) + b*(A
+ B))*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*Sqrt[a]*(A*b - a*B)*ArcTan[(Sqrt[a]
*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(Sqrt[b]*(a^2 + b^2)*d) - ((b*(A - B) - a*(A + B))*Log[1 - Sqrt[2]*Sqrt[Cot[c +
 d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((b*(A - B) - a*(A + B))*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]
] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.46298, antiderivative size = 278, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {3581, 3613, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac{(b (A-B)-a (A+B)) \log \left (\cot (c+d x)-\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(b (A-B)-a (A+B)) \log \left (\cot (c+d x)+\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{2 \sqrt{2} d \left (a^2+b^2\right )}+\frac{(a (A-B)+b (A+B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} d \left (a^2+b^2\right )}-\frac{(a (A-B)+b (A+B)) \tan ^{-1}\left (\sqrt{2} \sqrt{\cot (c+d x)}+1\right )}{\sqrt{2} d \left (a^2+b^2\right )}+\frac{2 \sqrt{a} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{b} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])),x]

[Out]

((a*(A - B) + b*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a*(A - B) + b*(A
+ B))*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) + (2*Sqrt[a]*(A*b - a*B)*ArcTan[(Sqrt[a]
*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(Sqrt[b]*(a^2 + b^2)*d) - ((b*(A - B) - a*(A + B))*Log[1 - Sqrt[2]*Sqrt[Cot[c +
 d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((b*(A - B) - a*(A + B))*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]
] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3613

Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_))/((a_.) + (b_.)*tan[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*x])^n*Simp[a*A + b*B - (A*b - a*B)
*Tan[e + f*x], x], x], x] + Dist[(b*(A*b - a*B))/(a^2 + b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2)
)/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2,
 0] && NeQ[c^2 + d^2, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \tan (c+d x)}{\sqrt{\cot (c+d x)} (a+b \tan (c+d x))} \, dx &=\int \frac{B+A \cot (c+d x)}{\sqrt{\cot (c+d x)} (b+a \cot (c+d x))} \, dx\\ &=\frac{\int \frac{a A+b B+(A b-a B) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx}{a^2+b^2}-\frac{(a (A b-a B)) \int \frac{1+\cot ^2(c+d x)}{\sqrt{\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{a^2+b^2}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{-a A-b B+(-A b+a B) x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{(a (A b-a B)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-x} (b-a x)} \, dx,x,-\cot (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{(2 a (A b-a B)) \operatorname{Subst}\left (\int \frac{1}{b+a x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac{(b (A-B)-a (A+B)) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}-\frac{(a (A-B)+b (A+B)) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=\frac{2 \sqrt{a} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{b} \left (a^2+b^2\right ) d}-\frac{(b (A-B)-a (A+B)) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(b (A-B)-a (A+B)) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a (A-B)+b (A+B)) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac{(a (A-B)+b (A+B)) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}\\ &=\frac{2 \sqrt{a} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{b} \left (a^2+b^2\right ) d}-\frac{(b (A-B)-a (A+B)) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(b (A-B)-a (A+B)) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a (A-B)+b (A+B)) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{(a (A-B)+b (A+B)) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}\\ &=\frac{(a (A-B)+b (A+B)) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}-\frac{(a (A-B)+b (A+B)) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\cot (c+d x)}\right )}{\sqrt{2} \left (a^2+b^2\right ) d}+\frac{2 \sqrt{a} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{\cot (c+d x)}}{\sqrt{b}}\right )}{\sqrt{b} \left (a^2+b^2\right ) d}-\frac{(b (A-B)-a (A+B)) \log \left (1-\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}+\frac{(b (A-B)-a (A+B)) \log \left (1+\sqrt{2} \sqrt{\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt{2} \left (a^2+b^2\right ) d}\\ \end{align*}

Mathematica [A]  time = 0.402428, size = 215, normalized size = 0.77 \[ -\frac{\sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \left (2 \sqrt{2} (a (A-B)+b (A+B)) \left (\tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )-\tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )+\frac{8 \sqrt{a} (A b-a B) \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{\tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{b}}-\sqrt{2} (a (A+B)+b (B-A)) \left (\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )\right )}{4 d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + b*Tan[c + d*x])),x]

[Out]

-(Sqrt[Cot[c + d*x]]*(2*Sqrt[2]*(a*(A - B) + b*(A + B))*(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - ArcTan[1 + S
qrt[2]*Sqrt[Tan[c + d*x]]]) + (8*Sqrt[a]*(A*b - a*B)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/Sqrt[b] - S
qrt[2]*(b*(-A + B) + a*(A + B))*(Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan
[c + d*x]] + Tan[c + d*x]]))*Sqrt[Tan[c + d*x]])/(4*(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [C]  time = 0.43, size = 3684, normalized size = 13.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x)

[Out]

1/2/d*2^(1/2)/(a^2+b^2)^(3/2)/(a+b+(a^2+b^2)^(1/2))/(-b+(a^2+b^2)^(1/2)-a)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(
(cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(co
s(d*x+c)-1)*(-3*I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^
(1/2)*a*b^2-2*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2)
)*a^4+2*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a^4+3*
I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b+B*El
lipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*b-B*EllipticPi((
-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3-B*EllipticPi((-(cos(d*
x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^3+B*EllipticPi((-(cos(d*x+c)-1-s
in(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a+B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))
/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*b-B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c
))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3-B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)
,1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^3-2*B*(a^2+b^2)^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x
+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a^3-2*B*(a^2+b^2)^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))
/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a^3+2*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d
*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a^2*b^2-2*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c
))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a^2*b^2+I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))
^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a+I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1
/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^3-A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I
,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b+A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2
^(1/2))*(a^2+b^2)^(1/2)*a*b^2-I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/
2))*(a^2+b^2)^(3/2)*b-I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2
+b^2)^(1/2)*a^3+2*B*(a^2+b^2)^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^
(1/2)-a),1/2*2^(1/2))*a^2*b-I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2)
)*(a^2+b^2)^(1/2)*a^3-I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2
+b^2)^(1/2)*b^3-I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^
(3/2)*a-I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*b-
I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a-I*B*Elli
pticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^3-A*EllipticPi((
-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b+A*EllipticPi((-(cos(
d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a*b^2+2*A*(a^2+b^2)^(1/2)*Ellipt
icPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a^2*b-2*A*(a^2+b^2)^(1
/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a*b^2+2*A*(a
^2+b^2)^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*
a^2*b+A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a-A*El
lipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*b-A*EllipticPi((
-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3+A*EllipticPi((-(cos(d*
x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^3+A*EllipticPi((-(cos(d*x+c)-1-s
in(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a-A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))
/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*b-A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c
))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3+A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)
,1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^3-2*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+
b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a^3*b-2*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2
+b^2)^(1/2)),1/2*2^(1/2))*a*b^3+2*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^
(1/2)-a),1/2*2^(1/2))*a^3*b+2*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2
)-a),1/2*2^(1/2))*a*b^3+B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2
+b^2)^(3/2)*a+3*I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^
(1/2)*a*b^2+I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2
)*a*b^2-3*I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*
a^2*b-I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a*b^
2-I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b+I*
B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b-2*A*(a
^2+b^2)^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*
a*b^2-3*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*
b-3*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a*b^2-3*
B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b-3*B*El
lipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a*b^2+2*B*(a^2+b
^2)^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*a^2*b+
I*A*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*a+I*A*Elli
pticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*b+I*A*EllipticPi((
-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3+I*A*EllipticPi((-(cos(
d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^3+I*B*EllipticPi((-(cos(d*x+c)
-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(3/2)*b+I*B*EllipticPi((-(cos(d*x+c)-1-sin(d
*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3)/sin(d*x+c)^3/(cos(d*x+c)/sin(d*x+c))^(1/2
)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \tan{\left (c + d x \right )}}{\left (a + b \tan{\left (c + d x \right )}\right ) \sqrt{\cot{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)**(1/2)/(a+b*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))/((a + b*tan(c + d*x))*sqrt(cot(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \tan \left (d x + c\right ) + A}{{\left (b \tan \left (d x + c\right ) + a\right )} \sqrt{\cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)/((b*tan(d*x + c) + a)*sqrt(cot(d*x + c))), x)